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1. Introduction 

The potential benefits of using electrothermal plasma to achieve rapid and reproducible ignition, 
as well as to compensate the temperature sensitivity of propelling charges, have been recognized 
for years (1–4).  In this regard, substantial research activities have been performed on plasma 
characteristics (5–9) and plasma-propellant interactions (10–23).  Significant progress has been 
reported in understanding these areas.  Furthermore, researchers have conducted both 
experiments and computer modeling to investigate plasma flows in closed chambers packed with 
inert or live propellant (24, 25).  These studies include flow dynamics as present in actual gun 
charge configurations.  However, for this novel propulsion technology to be effective, a 
fundamental understanding of the jet flow and its controlling parameters needs to be obtained.   

Recently, Chang and Howard examined the flow patterns of a plasma jet effused from a capillary 
into the open air for two pulse lengths of ~0.3 and 1.0 ms (26).  For the two pulse lengths, 
profound differences were observed in time duration of jet appearance, flow field width, flow 
penetration, and light intensity.  Other experiments with a 25-mm closed chamber packed with 
disk propellant in a conceptual configuration also showed a strong effect of the pulse length on 
the flame propagation in the propellant bed.  Most recently, Beyer conducted experiments 
involving a 30-mm gun (27).  The results again showed the effect of the pulse length on the 
charge-system ignition delay.   

The present work focuses on the flow dynamics resulting from a plasma jet impinging on a flat 
plate at variable incident angles (90°, 60°, and 45°) in the open air for the two pulse lengths.  
Such impingement flows may occur when the plasma jet enters the propellant bed in a charge 
system.  Result comparisons are made for the influence of the pulse length.   

2. Experimental 

Figure 1 is a photograph of the experimental setup for the present studies, which consists of a 
plasma generator, a jet impingement plate, and the common mounting plate.  The plasma 
generator is basically an erosive plasma capillary composed of a 9.5-mm outside-diameter and 
3.2-mm inside-diameter polyethylene tube housed in a stainless steel cylinder.  Inside the 
polyethylene tube is a 0.1-mm outside-diameter nickel filament, commonly called exploding 
wire (an element that initiates the plasma flow).  This material has been used extensively for 
capillary components in the past (2).  The electrodes at the ends of the exploding wire are made 
of a 3.2-mm tungsten rod at one end (anode) and an expendable steel nozzle, which is threaded 
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Figure 1.  Experimental setup. 

into the forward end of the stainless steel cylinder, at the other end (cathode).  The nozzle 
(3.2 mm in diameter) is also used to hold the polyethylene tube in place and to guide the plasma 
flow to the open space.  The effective capillary tube length is adjustable, giving a length-to-
diameter ratio of 12 to 22.  It has been determined that the ratio of 16 delivers energy efficiently 
for the present experimental system.  The pulsed power supply used is capable of delivering 
energy up to 3 kJ at a charging level of 3 kV. 

The impingement plate is made of a 19-mm thick optically clear acrylic plate.  Acrylic is chosen 
to provide an excellent signature of the jet impingement flow on the plate for photography after 
firing and to minimize potential interference from the magnetic field created from the plasma on 
pressure measurements.  Figure 2 indicates locations of the pressure ports for pressure-
distribution measurement in the radial direction, equally spaced (2 cm) from the center of the 
impingement area.  This center is carefully aligned with the centerline of the nozzle.  The 
distance S is the separation of the impingement plate from the nozzle exit along the centerline.  It 
is set to 25 mm for all tests.  The impingement plate can be rotated to give any specific incident 
angles of the incoming jet flow. 

In all experiments, a Phantom V high-speed digital camera was employed for high-speed 
photography of plasma flow.  The camera can record events at a frame rate of up to 64,000 
pictures/s.  In present studies, a frame rate of 13,000 to 20,000 pictures/s was adequate for 
capturing details of the flow field.  A neutral-density optical filter was placed in front of the 
camera lens to attenuate the plasma light so that details of the flow structure, especially the shock 
flow structure, could be better visualized.  For pressure measurements, Kistler pressure gages 
(Model 211B1) were installed behind the impingement plate.
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Figure 2.  Locations of pressure ports. 

 
The voltage and current through the capillary are recorded using Pearson coils.  In turn, these 
data are used to calculate the power and energy output of the capillary.   

 

3. Results and Discussion 

The short pulse length (~0.3 ms) was produced directly from the existing power supply system in 
the laboratory, while the long one (~1.0 ms) was obtained by adding an inductor to the system.  
Figure 3 presents typical measurements of the voltage and current, along with calculated power 
and energy output.  Although their resulting energy outputs were at about the same level, the 
voltage and current were significantly higher for the short pulse system. 

Previous visualization studies of a plasma jet flow into still air (see figure 4) revealed the 
formation of a barrel shock, a normal shock, and a precursor shock in the flow field (26).  While 
giving an increased time duration of flow, an increased pulse length resulted in a noticeable 
reduction of flow field width and light intensity.  However, the flow penetration (distance 
traveled) into still air was greater for a longer pulse length. 

After gaining a fundamental understanding of the free plasma jet flow, the present studies show 
the flow characteristics of plasma jets impinging on a flat plate at variable incident angles of 90°, 
60°, and 45°.  Results to be presented and compared include the flow pattern, the pressure 
distribution, and the flow signature on the impingement plate resulting from the short and long 
pulse lengths.
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Figure 3.  Electrical outputs—voltage, current, power, and energy:  (a) short pulse length and (b) long pulse length. 
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Figure 4.  Plasma jet flows in open air.   
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3.1 Flow Patterns 

In the test series with the long pulse length, the camera framing rate and the lens aperture were 
set at 13,100 frames/s and f/11, respectively.  In addition, an optical filter (neutral density 
index 1.2) was placed in front of the camera.  This setup allowed for visualizing the shock wave 
structure within the flow field.  For the short pulse length (since the light intensity and the flow 
speed were much higher), the previous setup was adjusted to 20,000 frames/s for the framing 
rate, f/16 for the lens aperture, and neutral density index 2.1 for the optical filter. 

3.1.1  The 90° Impingements  

Figure 5a exhibits a series of photographs obtained from the high-speed digital camera for the 
evolution of the flow field for the long pulse length.  The first visible light appeared at 
approximately 0.092 ms after triggering the ignitron.  Highly illuminated regions that may 
represent high-temperature regions can be identified clearly and immediately in front of the 
nozzle, in the Mach disc, and in the impingement areas.  The boundaries of the conical barrel 
shock are visible.  While propagating outward from the stagnation region, the leading part of the 
flow tended to separate from the impingement plate and curved up gradually, developing into a 
shape that closely resembles a sombrero.  The flow separation was attributed to the large 
difference in molecular weight between the plasma gas and the ambient air—a classical example 
of flow instability occurring at the interface of two fluids with different densities in relative 
motion. 

For the short pulse length, a similar flow development is illustrated in figure 5b.  However, the 
light intensity was actually much higher since these images were recorded with a heavier optical 
filter and a higher lens aperture setting.  The width of the flow field was greater, and the flow 
process took place faster.  These flow characteristics are well-correlated to the higher power 
output indicated in figure 3.   

3.1.2  The 60° Impingements 

Figure 6a shows the flow-field time histories for the long-pulse plasma jet impinging on the flat 
plate at the incident angle of 60°.  In this test arrangement, flow separation commenced almost 
from the very beginning, and the leading part of the flow curved up more obviously, developing 
into the shape of an ocean surge front.  Flow turbulence along the flow stream on the plate 
became increasingly apparent along the upper surface of the flow stream at approximately 
0.55 ms and then along the central core of the mainstream at a later period of time.  Note that the 
barrel shock in front of the nozzle remained visible until the last frame of the figure, indicating 
that the flow there remained supersonic until the end of the electrical pulse.  

Figure 6b shows the flow development in time for the short pulse length.  As observed in the test 
with the 90° impingement, the flow evolution proceeded much faster compared with the long 
pulse length.  The flow separation was also more evident.  In this case, the distance that the flow 
traveled on the plate was relatively shorter.  
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Figure 5.  The 90° plasma jet impingement flows:  (a) long pulse length and (b) short 
pulse length.   
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3.1.3  The 45° Impingements 

As displayed in figure 7a, a fairly similar flow process occurred in the 45° impingement as in the 
60° impingement for the long pulse length.  A close examination, however, reveals differences in 
several areas.  The flame front propagated faster and traveled a greater distance along the plate at 
45°.  Meanwhile, the thickness of the mainstream in the direction of the jet incidence increased.  
As expected, the flow in the direction opposite to the mainstream became noticeably less. 

For the short pulse length, the resulting flow field shown in figure 7b is very similar to the one 
for the 60° impingement exhibited in figure 6b.  The exception is that the flow traveled a greater 
distance on the plate. 

3.1.4  Flame Propagation Speeds 

Figure 8a shows a plot for locations of the visible plasma fronts along the impingement plate as 
measured from the photographic data.  Note that in all cases the visible plasma propagated in a 
fairly linear fashion during the early flow period.  Using these data, the early plasma front 
propagation speeds are estimated and plotted in figure 8b.  The result shows that the visible 
plasma propagated faster for the short pulse length, and the speed increased with decreasing 
incident angle of the jet flow.  

3.2 Pressure Distributions 

3.2.1  The 90° Impingements   

Figure 9 presents the pressure measurements on the flat plate for both the long and short pulse 
lengths, and gives the voltage measurement as a time reference. Difficulties were often 
encountered in the measurements because of the presence of magnetic fields and charged 
particles coupled with highly transient flow interactions with the impingement plate.  The figure 
shows that the pressure rises at Po and P1 nearly at the same time.  The pressures were expected 
to vary in accordance with the distance between the nozzle and the plate, as well as the power 
output from the capillary.  Oscillations occurred along the entire pressure-time traces.  It is 
unsure whether all of the oscillations existed physically or were induced electronically. 

A comparison between the two plots in figure 9 (note that they are plotted in different vertical 
scales) reveals an earlier pressure rise and a higher peak pressure for the short pulse.  This 
behavior is consistent with the data given in figure 10b—a shorter pulse length resulted in a 
higher flame propagation speed. 

3.2.2  The 60° Impingements   

At the 60° incidence, the overall pressure behavior shown in figure 11 is similar to that recorded 
in the 90° impingement.   
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Figure 7.  The 45° plasma jet impingement flows:  (a) long pulse length and (b) short pulse length.   
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Figure 8.  Plasma front spacial characteristics:  (a) visible plasma front locations and (b) estimated propagation 
speeds.   
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Figure 9.  Pressure distributions for 90° impingement flows:  (a) long pulse length and (b) short pulse length.   

 

3.2.3  The 45° Impingements 

At the 45° incidence, the overall time traces of the pressure given in figure 10 appear similar to 
those shown in figure 11.  However, when the incidence angle is further reduced, say to 30°, a 
delay in the pressure rising times at locations farther from the stagnation region is expected to 
become more apparent. 

Figure 10 also presents a set of pressure data measured in the lateral direction (i.e., perpendicular 
to the direction of the jet incidence).  For the long pulse length, all pressure rises in the lateral 
direction occurred behind times measured in the direction of the jet incidence, implying a 
significant flow-speed drop in the lateral direction.   
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Figure 10.  Pressure distributions for 45° impingement flows:  (a) long pulse length and (b) short pulse length.   
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Figure 11.  Pressure distribution for 60° impingement flows:  (a) long pulse length and (b) short pulse length.  
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3.2.4  Comparison of Stagnation Pressures 

When the pressure Po of all tests are plotted together, figure 12 explicitly shows that the peak 
stagnation pressure was higher for the short pulse length and that the pressure decreased with a 
decreasing incident angle.   
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Figure 12.  Stagnation pressure Po for all tests.   

 

3.3 Flow Signatures 

Figure 13 exhibits traces of the high-speed flows on the impingement plate.  Residue (fine 
particles) deposits produced from the erosion of the polyethylene tube in the capillary created the 
dark image.  Numerous flow streaks in the radial direction are seen around the stagnation region.  
The nonuniformity of the streak-distribution appearance and the darkened area represents a 
nonuniform distribution of fine particles across the jet flow before arriving at the plate surface.  
There exists a bright (clean) area around the stagnation region, created by local high-speed flows.  
Furthermore, scorches found on the impingement plate were caused by the moving heavy 
particles produced from the exploding wire and the erosion of the steel nozzle’s inner surface is 
through which the plasma was discharged.  These particles could carry a certain amount of 
kinetic energy and heat to the impingement plate.  Therefore, in an actual charge system, the 
particles could contribute significantly to the ignition stimulus required for the charge system. 

The stagnation region for the long pulse length was much smaller in comparison, although the 
total flow-trace areas on the impingement plate were about the same.  The shape of the flow 
signature varied with the incident angle (longer and narrower for a smaller incident angle).  
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Pulse length = 0.3 ms 
(a) 

Pulse length = 1.0 ms 

Pulse length = 1.0 ms 
(b)  

Figure 13.  Flow signatures:  (a) 90° impingement and (b) 45° impingement.   

 

3.4 Light Intensity of Flow Fields 

Measuring direct temperature of the flow or the surface of the impingement plate by 
thermocouples seems improbable in such a severe environment involving magnetic effects, 
shock wave interactions, and highly transient flows.  The following simple measuring methods 
can be used to compare the thermal effect between the two pulse lengths of interest.   

In this test series, a direct flow-field comparison was made in terms of the flow-field size and the 
brightness of the images obtained from the high-speed camera with an identical optical setting of 
framing rate, lens aperture, and filter.  Figure 14 shows the results for two 90° impingement 
flows—one for the long pulse length and the other for the short pulse length.  It is clear that for
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Figure 14.  Light intensity comparison.   

 
the short pulse length, the flow field was significantly larger and its light intensity was much 
higher.  However, the time duration was reduced to one-third of the time duration of the long 
pulse length.   
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During the same tests, a photodiode, positioned 60 cm away from the stagnation region, was 
employed to monitor the light intensity of the flow field.  The resulting plot shows that the 
maximum light intensity for the short pulse length was approximately 8× that for the long pulse 
length.  Unlike the images from the camera showing that the visible light faded away at the end 
of the pulse length, the light intensity measured by the diode stayed for a few more milliseconds 
beyond the pulse length.  This discrepancy could be due to the possibility that the diode used 
records data in a broader band of electromagnetic spectrum than the digital camera.   

Since light emissions from the plasma interact with some propellants at a certain surface depth 
(20), stronger emissions resulting from a short pulse length could better promote fast ignition of 
a charge.  On the other hand, a greater flow penetration into the propellant bed and a longer 
duration of flow interaction resulting from a longer pulse length could achieve a more effective 
ignition for propellants more easily ignited by convective heat transfer.  The relative importance 
of these two effects has to be weighed in accordance with the propellant formulation and the 
charge configuration.  Therefore, it is clear that the pulse length needs to be optimized in order to 
best fit a given propelling charge system.   

4. Summary and Conclusion 

In the present experiments, several interesting and important flow characteristics have been 
observed in both normal and oblique plasma jet impingements on a flat plate for two pulse 
lengths of approximately 0.3 and 1.0 ms.  Result comparisons are made for the influence of the 
pulse length.   

In all tests, the photographic and pressure data indicated that plasma jet impingement flows were 
highly transient and turbulent.  A shorter pulse length would result in a wider flow field, faster 
flow process, higher light intensity, and shorter time duration of flow interaction.  Additionally, 
the stagnation region on the impingement plate was larger, and the stagnation pressure was 
higher in comparison with those obtained from a longer pulse length.   

The incident angle of a plasma jet impinging on a flat plate also plays an important role in 
influencing the flow characteristics.  A smaller incident angle resulted in a lower stagnation 
pressure, but a higher flame propagation speed along the impingement plate. Additionally, it 
gave a longer, but narrower, flow coverage area on the impingement plate. 

These experimental studies have elucidated many insights into the plasma jet flows and have 
shown that the plasma pulse length can have a strong influence on the flow characteristics 
(including radiation) and, consequently, on the plasma-propellant interactions.  Therefore, the 
plasma pulse length should be optimized in order to achieve a highly effective ignition of a 
propulsion system with a minimum demand of electrical energy.   
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